Sunday 24 December 2017

Glidande medelvärde variabel period


glidande medelvärde En teknisk analysperiod som innebär ett genomsnittligt pris på en säkerhet under en viss tidsperiod (den vanligaste typen är 20, 30, 50, 100 och 200 dagar), som används för att upptäcka prissättningstrender genom att utplåna stora fluktuationer. Detta är kanske den vanligaste variabeln i teknisk analys. Flyttande genomsnittsdata används för att skapa diagram som visar om ett aktiekurs trendar upp eller ner. De kan användas för att spåra dagliga, veckovisa eller månatliga mönster. Varje ny dag (eller veckor eller månader) tal läggs till i medelvärdet och de äldsta numren tappas så, genomsnittet rör sig över tiden. I allmänhet. Ju kortare tidsramen som används desto mer flyktiga priser visas, så till exempel, 20 dagars glidande medellinjer tenderar att flytta upp och ner mer än 200 dagars glidande medellinjer. kijun line multirule system STARC band förskjutna glidande medeltal Keltner kanal McClellan Oscillator trigger line Copyright kopia 2017 WebFinance, Inc. Alla rättigheter reserverade. Otillåtet dubbelarbete, helt eller delvis, är strängt förbjuden. Lägg till en trend eller rörlig genomsnittslinje till ett diagram Gäller för: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mer. Mindre Om du vill visa datatrender eller flytta medelvärden i ett diagram du skapade. du kan lägga till en trendlinje. Du kan också förlänga en trendlinje bortom din faktiska data för att kunna förutse framtida värden. Till exempel prognostiserar följande linjära trendlinje två kvartaler framåt och visar tydligt en uppåtgående trend som ser lovande ut för framtida försäljning. Du kan lägga till en trendlinje till ett 2-D-diagram som inte är staplat, inklusive område, streck, kolumn, rad, lager, scatter och bubbla. Du kan inte lägga till en trendlinje till en staplad, 3-D, radar, paj, yta eller donut diagram. Lägg till en trendlinje På diagrammet klickar du på den dataserie som du vill lägga till en trendlinje eller glidande medelvärde. Trendlinjen börjar på den första datapunkten i den dataserie du väljer. Markera rutan Trendline. För att välja en annan typ av trendlinje, klicka på pilen bredvid Trendline. och klicka sedan Exponential. Linjär prognos. eller två period flyttande medelvärde. För ytterligare trendlinjer, klicka på Fler alternativ. Om du väljer Fler alternativ. klicka på det alternativ du vill ha i rutan Format Trendline under Trendline Options. Om du väljer Polynomial. ange högsta effekten för den oberoende variabeln i rutan Order. Om du väljer Flytta medelvärde. Ange antalet perioder som ska användas för att beräkna det glidande genomsnittet i rutan Period. Tips: En trendlinje är mest exakt när dess R-kvadrerade värde (ett tal från 0 till 1 som visar hur nära de uppskattade värdena för trendlinjen motsvarar din faktiska data) ligger vid eller nära 1. När du lägger till en trendlinje för dina data , Excel beräknar automatiskt sitt R-kvadrerade värde. Du kan visa detta värde på diagrammet genom att markera rutan Visa R-kvadrering i kartrutan (Format Trendline-rutan, Trendline Options). Du kan lära dig mer om alla trendlinjealternativ i nedanstående avsnitt. Linjär trendlinje Använd denna typ av trendlinje för att skapa en bäst passande rak linje för enkla linjära dataset. Dina data är linjära om mönstret i dess datapunkter ser ut som en linje. En linjär trendlinje visar vanligtvis att något ökar eller minskar med jämna mellanrum. En linjär trendlinje använder denna ekvation för att beräkna de minsta kvadraterna som passar för en linje: där m är lutningen och b är avlyssningen. Följande linjära trendlinje visar att försäljningen av kylskåp konsekvent har ökat under en 8-årig period. Observera att R-kvadrerat värde (ett tal från 0 till 1 som visar hur nära de uppskattade värdena för trendlinjen motsvarar din faktiska data) är 0.9792, vilket är en bra passning på linjen till data. Visar en bäst passande kurvlinje, denna trendlinje är användbar när förändringshastigheten i data ökar eller minskar snabbt och sedan nivåer ut. En logaritmisk trendlinje kan använda negativa och positiva värden. En logaritmisk trendlinje använder denna ekvation för att beräkna minsta kvadraterna passande genom punkter: där c och b är konstanter och ln är den naturliga logaritmen funktionen. Följande logaritmiska trendlinje visar förutspådd befolkningstillväxt för djur i en fastareal, där befolkningen nivån ut som ett utrymme för djuren minskade. Observera att R-kvadrerade värdet är 0.933, vilket är en relativt bra passning av linjen till data. Denna trendlinje är användbar när dina data fluktuerar. Till exempel när du analyserar vinster och förluster över en stor dataset. Ordningen av polynomet kan bestämmas av antalet fluktuationer i data eller hur många böjningar (berg och dalar) visas i kurvan. Typiskt har en order 2 polynomisk trendlinje endast en kulle eller dal, en order 3 har en eller två kullar eller dalar och en order 4 har upp till tre kullar eller dalar. En polynom eller kurvlinjig trendlinje använder denna ekvation för att beräkna minsta kvadraterna passande genom punkter: var b och är konstanter. Följande Order 2 polynomial trendlinje (en kulle) visar förhållandet mellan körhastighet och bränsleförbrukning. Observera att R-kvadrerat värde är 0.979, vilket är nära 1 så linjerna passar bra för data. Visar en kurvlinje, denna trendlinje är användbar för dataset som jämför mätningar som ökar med en viss takt. Till exempel accelerationen av en tävlingsbil med 1 sekunders intervall. Du kan inte skapa en power trendlinje om dina data innehåller noll eller negativ värden. En kraft trendlinje använder denna ekvation för att beräkna minsta kvadraterna passande genom punkter: där c och b är konstanter. Obs! Det här alternativet är inte tillgängligt när dina data innehåller negativa eller nollvärden. Följande distansmätningsdiagram visar avståndet i meter per sekund. Power trendlinjen visar tydligt den ökande accelerationen. Observera att R-kvadrerat värde är 0.986, vilket är en nästan perfekt passform av linjen till data. Visar en krökt linje, denna trendlinje är användbar när datavärdena stiger eller faller med ständigt ökande räntor. Du kan inte skapa en exponentiell trendlinje om dina data innehåller noll - eller negativa värden. En exponentiell trendlinje använder denna ekvation för att beräkna minsta kvadrater passande genom punkter: där c och b är konstanter och e är basen för den naturliga logaritmen. Följande exponentiella trendlinje visar den minskande mängden kol 14 i ett objekt som det åldras. Observera att R-kvadrerat värde är 0.990, vilket betyder att linjen passar data nästan perfekt. Flyttande genomsnittlig trendlinje Denna trendlinje utspelar fluktuationer i data för att tydligt visa ett mönster eller en trend. Ett glidande medel använder ett visst antal datapunkter (inställt av alternativet Period), genomsnitts dem och använder medelvärdet som en punkt i raden. Till exempel, om Perioden är inställd på 2, används medelvärdet av de två första datapunkterna som den första punkten i den glidande genomsnittliga trendlinjen. Medelvärdet av andra och tredje datapunkter används som andra punkt i trendlinjen etc. En rörlig genomsnittslinje använder denna ekvation: Antalet poäng i en glidande medellinje är lika med det totala antalet poäng i serien minus nummer du anger för perioden. I ett scatterdiagram baseras trendlinjen på ordningen av x-värdena i diagrammet. För ett bättre resultat, sortera x-värdena innan du lägger till ett glidande medelvärde. Följande rörliga genomsnittliga trendlinje visar ett mönster i antalet bostäder som säljs under en 26-veckorsperiod. Introduktion till ARIMA: nonseasonal modeller ARIMA (p, d, q) prognoser ekvation: ARIMA-modeller är i teorin den vanligaste klassen av modeller för prognoser för en tidsserie som kan göras för att vara 8220stationary8221 genom differentiering (om nödvändigt), kanske i samband med olinjära transformationer, såsom loggning eller deflatering (om nödvändigt). En slumpmässig variabel som är en tidsserie är stationär om dess statistiska egenskaper är konstanta över tiden. En stationär serie har ingen trend, dess variationer kring dess medelvärde har en konstant amplitud, och det vinklar på ett konsekvent sätt. d. v.s. dess kortsiktiga slumpmässiga tidsmönster ser alltid ut i statistisk mening. Det sistnämnda tillståndet betyder att dess autokorrelationer (korrelationer med sina egna tidigare avvikelser från medelvärdet) förblir konstanta över tiden, eller likvärdigt, att dess effektspektrum förblir konstant över tiden. En slumpmässig variabel i denna blankett kan ses som en kombination av signal och brus, och signalen (om en är uppenbar) kan vara ett mönster av snabb eller långsam mean reversion eller sinusformig oscillation eller snabb växling i tecken , och det kan också ha en säsongskomponent. En ARIMA-modell kan ses som en 8220filter8221 som försöker separera signalen från bruset, och signalen extrapoleras därefter i framtiden för att få prognoser. ARIMA-prognosekvationen för en stationär tidsserie är en linjär (d. v.s. regressionstyp) ekvation där prediktorerna består av lags av de beroende variabla andorlagren av prognosfel. Det vill säga: Förutsatt värdet på Y är en konstant och en viktad summa av ett eller flera nya värden av Y och eller en vägd summa av ett eller flera nya värden av felen. Om prediktorerna endast består av fördröjda värden på Y. Det är en ren autoregressiv (8220self-regressed8221) modell, som bara är ett speciellt fall av en regressionsmodell och som kan förses med standard regressionsprogram. Exempelvis är en första-order-autoregressiv (8220AR (1) 8221) modell för Y en enkel regressionsmodell där den oberoende variabeln bara Y är försenad med en period (LAG (Y, 1) i Statgraphics eller YLAG1 i RegressIt). Om en del av prediktorerna är felaktiga, är en ARIMA-modell inte en linjär regressionsmodell, eftersom det inte går att ange 8220last period8217s error8221 som en oberoende variabel: felen måste beräknas periodvis när modellen är monterad på data. Tekniskt sett är problemet med att använda fördröjda fel som prediktorer att modellen8217s förutsägelser inte är linjära funktioner för koefficienterna. även om de är linjära funktioner i tidigare data. Så koefficienter i ARIMA-modeller som innehåller försenade fel måste uppskattas genom olinjära optimeringsmetoder (8220hill-climbing8221) istället för att bara lösa ett system av ekvationer. Akronymet ARIMA står för Auto-Regressive Integrated Moving Average. Lags av den stationära serien i prognosen ekvationen kallas quotautoregressivequot termer, lags av prognosfel kallas quotmoving averagequot termer och en tidsserie som behöver differentieras för att göras stationär sägs vara en quotintegratedquot-version av en stationär serie. Slumpmässiga och slumpmässiga modeller, autoregressiva modeller och exponentiella utjämningsmodeller är alla speciella fall av ARIMA-modeller. En nonseasonal ARIMA-modell klassificeras som en quotARIMA (p, d, q) kvotmodell där: p är antalet autoregressiva termer, d är antalet icke-säsongsskillnader som behövs för stationaritet och q är antalet fördröjda prognosfel i prediksionsekvationen. Prognosekvationen är konstruerad enligt följande. Först, låt y beteckna d: s skillnad på Y. Det betyder: Observera att den andra skillnaden i Y (d2-fallet) inte är skillnaden från 2 perioder sedan. Det är snarare den första skillnaden-av-första skillnaden. vilken är den diskreta analogen av ett andra derivat, dvs den lokala accelerationen av serien i stället för dess lokala trend. När det gäller y. Den allmänna prognostiseringsekvationen är: Här definieras de rörliga genomsnittsparametrarna (9528217s) så att deras tecken är negativa i ekvationen, enligt konventionen införd av Box och Jenkins. Vissa författare och programvara (inklusive R-programmeringsspråket) definierar dem så att de har plustecken istället. När faktiska siffror är anslutna till ekvationen finns det ingen tvetydighet, men det är viktigt att veta vilken konvention din programvara använder när du läser utmatningen. Ofta anges parametrarna av AR (1), AR (2), 8230 och MA (1), MA (2), 8230 etc. För att identifiera lämplig ARIMA-modell för Y. börjar du med att bestämma sorteringsordningen (d) behöver stationera serierna och ta bort säsongens bruttoegenskaper, kanske i kombination med en variationsstabiliserande transformation, såsom loggning eller avflöde. Om du slutar vid denna tidpunkt och förutsäger att den olika serien är konstant, har du bara monterat en slumpmässig promenad eller slumpmässig trendmodell. Den stationära serien kan emellertid fortfarande ha autokorrelerade fel, vilket tyder på att vissa antal AR-termer (p 8805 1) och eller några nummer MA-termer (q 8805 1) också behövs i prognosekvationen. Processen att bestämma värdena p, d och q som är bäst för en given tidsserie kommer att diskuteras i senare avsnitt av anteckningarna (vars länkar finns längst upp på denna sida), men en förhandsvisning av några av de typerna av nonseasonal ARIMA-modeller som vanligtvis förekommer ges nedan. ARIMA (1,0,0) första ordningens autoregressiva modell: Om serien är stationär och autokorrelerad kanske den kan förutsägas som en multipel av sitt eget tidigare värde plus en konstant. Prognosekvationen i detta fall är 8230, som Y är regresserad i sig själv fördröjd med en period. Detta är en 8220ARIMA (1,0,0) constant8221 modell. Om medelvärdet av Y är noll, skulle den konstanta termen inte inkluderas. Om lutningskoefficienten 981 1 är positiv och mindre än 1 i storleksordningen (den måste vara mindre än 1 i storleksordningen om Y är stillastående), beskriver modellen medelåterkallande beteende där nästa period8217s värde bör förutses vara 981 1 gånger som långt ifrån medelvärdet som detta period8217s värde. Om 981 1 är negativ förutspår det medelåterkallande beteende med teckenväxling, dvs det förutspår också att Y kommer att ligga under den genomsnittliga nästa perioden om den är över medelvärdet denna period. I en andra-ordningsautoregressiv modell (ARIMA (2,0,0)) skulle det finnas en Y t-2 term till höger också, och så vidare. Beroende på tecken och storheter på koefficienterna kan en ARIMA (2,0,0) modell beskriva ett system vars medföljande reversering sker på ett sinusformigt oscillerande sätt, som en massans rörelse på en fjäder som utsätts för slumpmässiga stötar . ARIMA (0,1,0) slumpmässig promenad: Om serien Y inte är stillastående är den enklaste möjliga modellen för en slumpmässig promenadmodell, vilken kan betraktas som ett begränsande fall av en AR (1) - modell där den autogegrativa koefficienten är lika med 1, dvs en serie med oändligt långsam medelbackning. Förutsägningsekvationen för denna modell kan skrivas som: där den konstanta termen är den genomsnittliga period-till-period-förändringen (dvs. den långsiktiga driften) i Y. Denna modell kan monteras som en icke-avlyssningsregressionsmodell där första skillnaden i Y är den beroende variabeln. Eftersom den innehåller (endast) en nonseasonal skillnad och en konstant term, klassificeras den som en quotARIMA (0,1,0) modell med constant. quot. Den slumpmässiga walk-without-drift-modellen skulle vara en ARIMA (0,1, 0) modell utan konstant ARIMA (1,1,0) annorlunda första ordningens autoregressiva modell: Om fel i en slumpmässig promenadmodell är autokorrelerade kanske problemet kan lösas genom att lägga en lag av den beroende variabeln till prediktionsekvationen - - ie genom att regressera den första skillnaden av Y på sig själv fördröjd med en period. Detta skulle ge följande förutsägelsesekvation: som kan omordnas till Detta är en förstaordens autregressiv modell med en ordning av icke-säsongsskillnader och en konstant term, dvs. en ARIMA (1,1,0) modell. ARIMA (0,1,1) utan konstant enkel exponentiell utjämning: En annan strategi för korrigering av autokorrelerade fel i en slumpmässig promenadmodell föreslås av den enkla exponentiella utjämningsmodellen. Minns att för några icke-stationära tidsserier (t ex de som uppvisar bullriga fluktuationer kring ett långsamt varierande medelvärde), utförs slumpmässiga promenadmodellen inte lika bra som ett glidande medelvärde av tidigare värden. Med andra ord, istället för att ta den senaste observationen som prognosen för nästa observation, är det bättre att använda ett genomsnitt av de sista observationerna för att filtrera bort bullret och mer exakt uppskatta det lokala medelvärdet. Den enkla exponentiella utjämningsmodellen använder ett exponentiellt vägt glidande medelvärde av tidigare värden för att uppnå denna effekt. Förutsägningsekvationen för den enkla exponentiella utjämningsmodellen kan skrivas i ett antal matematiskt ekvivalenta former. varav den ena är den så kallade 8220error correction8221-formen, där den föregående prognosen justeras i riktning mot det fel som det gjorde: Eftersom e t-1 Y t-1 - 374 t-1 per definition kan detta omskrivas som : vilket är en ARIMA (0,1,1) - utan konstant prognosekvation med 952 1 1 - 945. Det innebär att du kan passa en enkel exponentiell utjämning genom att ange den som en ARIMA (0,1,1) modell utan konstant, och den uppskattade MA (1) - koefficienten motsvarar 1-minus-alfa i SES-formeln. Minns att i SES-modellen är den genomsnittliga åldern för data i prognoserna för 1-tiden framåt 1 945. Det betyder att de tenderar att ligga bakom trender eller vändpunkter med cirka 1 945 perioder. Det följer att den genomsnittliga åldern för data i de 1-prognos framåt av en ARIMA (0,1,1) utan konstant modell är 1 (1 - 952 1). Så, till exempel, om 952 1 0,8 är medelåldern 5. När 952 1 närmar sig 1 blir ARIMA (0,1,1) utan konstant modell ett mycket långsiktigt rörligt medelvärde och som 952 1 närmar sig 0 blir det en slumpmässig promenad utan driftmodell. What8217s det bästa sättet att korrigera för autokorrelation: Lägg till AR-termer eller lägga till MA-termer I de tidigare två modellerna som diskuterats ovan fixades problemet med autokorrelerade fel i en slumpmässig promenadmodell på två olika sätt: genom att lägga till ett fördröjt värde av de olika serierna till ekvationen eller lägga till ett fördröjt värde av prognosfelet. Vilket tillvägagångssätt är bäst En tumregel för denna situation, som kommer att diskuteras mer i detalj senare, är att positiv autokorrelation vanligtvis behandlas bäst genom att addera en AR-term till modellen och negativ autokorrelation behandlas vanligtvis bäst genom att lägga till en MA term. I affärs - och ekonomiska tidsserier uppstår negativ autokorrelation ofta som en artefakt av differentiering. (I allmänhet minskar differentieringen positiv autokorrelation och kan även orsaka en växling från positiv till negativ autokorrelation.) Således används ARIMA (0,1,1) - modellen, i vilken skillnad åtföljs av en MA-term, oftare än en ARIMA (1,1,0) modell. ARIMA (0,1,1) med konstant enkel exponentiell utjämning med tillväxt: Genom att implementera SES-modellen som en ARIMA-modell får du viss flexibilitet. För det första får den uppskattade MA (1) - koefficienten vara negativ. Detta motsvarar en utjämningsfaktor som är större än 1 i en SES-modell, vilket vanligtvis inte är tillåtet med SES-modellproceduren. För det andra har du möjlighet att inkludera en konstant term i ARIMA-modellen om du vill, för att uppskatta en genomsnittlig trendfri noll. ARIMA-modellen (0,1,1) med konstant har förutsägelsesekvationen: Prognoserna från den här modellen är kvalitativt likartade som i SES-modellen, förutom att banan för de långsiktiga prognoserna typiskt är en sluttande linje (vars lutning är lika med mu) snarare än en horisontell linje. ARIMA (0,2,1) eller (0,2,2) utan konstant linjär exponentiell utjämning: Linjära exponentiella utjämningsmodeller är ARIMA-modeller som använder två icke-säsongsskillnader i samband med MA-termer. Den andra skillnaden i en serie Y är inte bara skillnaden mellan Y och sig själv i två perioder, men det är snarare den första skillnaden i den första skillnaden, dvs. Y-förändringen i Y vid period t. Således är den andra skillnaden av Y vid period t lika med (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. En andra skillnad av en diskret funktion är analog med ett andra derivat av en kontinuerlig funktion: det mäter kvotccelerationquot eller quotcurvaturequot i funktionen vid en given tidpunkt. ARIMA-modellen (0,2,2) utan konstant förutspår att den andra skillnaden i serien motsvarar en linjär funktion av de två sista prognosfel: som kan omordnas som: där 952 1 och 952 2 är MA (1) och MA (2) koefficienter. Detta är en generell linjär exponentiell utjämningsmodell. väsentligen samma som Holt8217s modell, och Brown8217s modell är ett speciellt fall. Den använder exponentiellt vägda glidande medelvärden för att uppskatta både en lokal nivå och en lokal trend i serien. De långsiktiga prognoserna från denna modell konvergerar till en rak linje vars lutning beror på den genomsnittliga trenden som observerats mot slutet av serien. ARIMA (1,1,2) utan konstant dämpad trend linjär exponentiell utjämning. Denna modell illustreras i de bifogade bilderna på ARIMA-modellerna. Den extrapolerar den lokala trenden i slutet av serien men plattar ut på längre prognoshorisonter för att presentera en konservatismskampanj, en övning som har empiriskt stöd. Se artikeln om varför Damped Trend worksquot av Gardner och McKenzie och artikeln "Rulequot Rulequot" av Armstrong et al. för detaljer. Det är vanligtvis lämpligt att hålla sig till modeller där minst en av p och q inte är större än 1, dvs försök inte passa en modell som ARIMA (2,1,2), eftersom det troligtvis kommer att leda till övermontering och quotcommon-factorquot-problem som diskuteras närmare i noterna om den matematiska strukturen för ARIMA-modeller. Implementering av kalkylark: ARIMA-modeller som de som beskrivs ovan är enkla att implementera på ett kalkylblad. Förutsägningsekvationen är helt enkelt en linjär ekvation som refererar till tidigare värden av ursprungliga tidsserier och tidigare värden av felen. Således kan du ställa in ett ARIMA-prognoskalkylblad genom att lagra data i kolumn A, prognosformeln i kolumn B och felen (data minus prognoser) i kolumn C. Förutsättningsformeln i en typisk cell i kolumn B skulle helt enkelt vara ett linjärt uttryck som hänvisar till värden i föregående rader av kolumnerna A och C multiplicerat med lämpliga AR - eller MA-koefficienter lagrade i celler på annat håll på kalkylbladet.

No comments:

Post a Comment